
Understanding Failure Response in
Service Discovery Systems

C. Dabrowski, K. Mills, S. Quirolgico

National Institute of Standards & Technology
Gaithersburg, Maryland 20899

ABSTRACT
Service discovery systems enable distributed components to find
each other without prior arrangement, to express capabilities and
needs, to aggregate into useful compositions, and to detect and
adapt to changes. First-generation discovery systems can be
categorized based on one of three underlying architectures and on
choice of behaviors for discovery, monitoring, and recovery. This
paper reports a series of investigations into the robustness of
designs that underlie selected service discovery systems. The
paper presents a set of experimental methods for analysis of
robustness in discovery systems under increasing failure intensity.
These methods yield quantitative measures for effectiveness,
responsiveness, and efficiency. Using these methods, we
characterize robustness of alternate service discovery architectures
and discuss benefits and costs of various system configurations.
Overall, we find that first-generation service discovery systems
can be robust under difficult failure environments. This work
contributes to better understanding of failure behavior in existing
discovery systems, allowing potential users to configure
deployments to obtain the best achievable robustness at the least
available cost. The work also contributes to design improvements
for next-generation service discovery systems.

Keywords: Distributed systems, robustness, service discovery

1. INTRODUCTION

Various teams designed and implemented a first generation of
(competing) service discovery systems [1-6] that enable
distributed components to find each other without prior
arrangement, to express capabilities and needs, to compose into
collections, and to detect and adapt to changes. Each specific
design defines a system structure, along with protocols for
discovery, monitoring, and recovery. Some designs [5,6] assume a
specific underlying communication technology, and some designs
[1,5] focus on one application domain. Three designs [2-4] were
conceived to operate over Internet protocols and to support many
applications.

In this paper, we investigate the architectures and
behaviors underlying Jini Networking Technology1 [2], Universal
Plug and Play (UPnP) [3], and the Service Location Protocol
(SLP) [4] when subjected to various failures. Elsewhere [7], we

1 Certain commercial products or company names are identified in this
paper to describe our study adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor to imply that the products or names
identified are necessarily the best available for the purpose.

present a generic model encompassing the designs of these
systems and we identify performance issues that could arise.
While this previous work considers system behavior absent
failures, here we explore the relative ability of discovery systems
to cope with different types and intensities of failure.

We reported preliminary results in various conference
papers [8-11]; however, this paper improves upon earlier work in
two ways. First, we extend the scope of our results to cover three
architectures (two-party, three-party, and adaptive), three failure
scenarios (configuration restoration, service acquisition and
maintenance, and consistency maintenance), four failure types
(power failure and restart, node failure, communication failure,
and message loss), and a set of failure detection and recovery
techniques at three levels (transport protocols, discovery
protocols, and application logic). Second, we increase the amount
of data collected and analyzed to obtain better estimates for
performance metrics at high failure rates.

This paper contributes to the understanding of service
discovery systems. First, this paper characterizes robustness of
discovery systems under difficult failure environments. This paper
further identifies and discusses the most significant design and
configuration decisions that influence robustness. Second, this
paper identifies specific design and deployment decisions that
could lead to diminished robustness. Third, this paper quantifies
the relative cost associated with specific decisions. Overall, the
information provided here should contribute to better
understanding of failure behavior in existing discovery systems,
allowing potential users to configure deployments to obtain the
best achievable robustness at the least available cost. Further,
results and discussions presented here could contribute to design
improvements in the next generation of discovery systems.

This paper also contributes experimental methods to study
robustness in distributed systems. First, we introduce and apply
metrics to quantify relative robustness and cost at the application
level for various scenarios. Second, we present a technique to
decompose aggregate robustness into detection and recovery
latency. Using this technique, we show how similar robustness
can be achieved through different behaviors arising from
particular design choices. Our methods can be adopted, adapted,
or extended by other researchers to investigate failure response in
distributed systems – a topic due for increased study.

We begin (in Section 2) with a synopsis of existing work
comparing and contrasting service discovery systems. Most
previous work focuses on functional comparisons [12-19], on
means for translating among discovery systems [20-26], or on
improving existing designs [27-37]. Our own related work [7, 38-
42] attempts to unify designs for several existing discovery
systems, and investigates performance problems arising when
such systems are deployed at large scale.

 1

In Section 3, we survey the design and function of service
discovery systems. We introduce a model to convey concepts
across selected systems. Using our model, we describe how
discovery operates under UPnP (a two-party architecture, where
clients issue multicast queries to find services), Jini (a three-party
architecture, where clients consult a directory to find services),
and SLP (which is a three-party architecture that can adapt to
become a two-party architecture). We also describe two
mechanisms (polling and notification) used by discovery systems
to maintain consistent information among distributed replicas. The
architectures, discovery procedures, and consistency maintenance
mechanisms described in Section 3 form the basis for scenarios,
experiments, and results recounted in later sections.

In Section 4, we introduce selected types of failure that can
impede a distributed system and we discuss selected techniques to
detect and recover at three layers. At the lowest layer, transport
protocols may include detection and recovery mechanisms (e.g.,
acknowledgments, retransmissions, and exceptions). In the middle
layer, discovery protocols typically include some detection and
recovery mechanisms (e.g., heartbeats and soft state). At the top
layer, applications may take recovery actions in reaction to
exceptions raised by transport protocols. Interactions among these
detection and recovery techniques can become quite intricate and
difficult to understand.

In Section 5, we describe our experiment methodology,
consisting of six steps: (1) constructing (simulation) models
reflecting structure, behavior, and deployments of selected service
discovery systems, (2) incorporating failure models into the
simulations (3) devising scenarios and related metrics to quantify
robustness and cost, (4) simulating scenarios for selected
configurations over a range of failure rates, (5) collecting,
analyzing, and plotting data from simulations, and (6)
investigating unexpected results and anomalies. In Section 6, we
describe the design and results for our experiments: (1) restart
after power failure, (2) service acquisition and maintenance
impeded by node failures, and consistency maintenance impeded
(3) by communication failures and (4) by message loss. We report
results from these four experiments, which encompass 30
configurations. For each experiment, we explain the scenario and
failure model, define metrics, present results, outline findings, and
discuss unexpected outcomes. We close in Section 7 with a précis
of our findings and contributions.

2. RELATED WORK

Emergence of various specifications for service discovery
systems, coupled with the anticipated importance of discovery
functionality in future distributed systems, has stimulated
significant interest in understanding similarities and differences
among competing designs. Most existing comparisons focus on
architecture, features, and function. A few comparisons also
consider programming differences, because most discovery
systems are conceived as middleware to support distributed
applications. Bettsletter and Renner [12] compare SLP, Jini,
UPnP, and Bluetooth with respect to architecture, function, and
features, and consider underlying requirements for programming
languages, operating systems, and network protocols. The
comparison is expressed using concepts and terminology specific
to each discovery system, although the authors do identify three
common aspects (support for searching on service attributes,
inclusion of a directory, and use of leasing) for comparison.
Richard [13] compares software architectures, along with system

features and functions, for Jini, Bluetooth, Salutation, SLP, and
UPnP. Elsewhere [17], Richard expands his comparison to include
programming considerations by providing source code for clients
and services in Jini, SLP, UPnP, and Bluetooth. Pascoe [15]
outlines a brief architectural comparison of Jini, UPnP, and
Salutation, and Rekesh [14] gives a similar comparison that
appears to be based on Pascoe’s work. In a subsequent paper [16],
Pascoe amplifies his architectural comparison to include
comparison of functions and features. O’Driscoll [18], when
considering a wide range of home networking technology,
provides descriptions of Bluetooth, HAVi (the Home Audio-
Video interoperability specification), UPnP, and Jini. Though
giving no direct comparison, O’Driscoll provides a summary of
architecture, function, and features from which readers may infer
a comparison. Olivier [19] provides a detailed description of Jini,
but also includes a brief description of UPnP and a comparison
between Jini and SLP. None of these comparisons considers
performance or robustness.

Limitations in existing comparisons motivated our own
work. Elsewhere [7], we provide a unified and general model for
first-generation discovery systems and then show how our model
can be used to represent Jini, UPnP, and SLP. Our unified model,
conceived with neutral terminology, provides a basis for direct
comparison among architectural, functional, and behavioral
elements of designs. Our model also reveals limitations and open
issues in existing designs and specifications, and includes a set of
service guarantees that we believe discovery systems should
attempt to satisfy. Further, we identify selected performance
issues that may arise when deploying discovery systems at large
scale, and we use our model to outline algorithms that might
improve performance. While our previous work improves on
existing comparisons, we did not consider robustness under
various types of failure. The present paper extends our previous
work by comparing failure response in the major designs for first-
generation discovery systems (as represented by Jini, UPnP, and
SLP).

As a natural extension to functional comparisons, some
researchers conceive protocol translators in order to achieve
interoperation among dissimilar service discovery systems. For
example, the Open Services Gateway Initiative (OSGi) [20, and
also chapter 17 in 18] defines a layer of middleware to bridge
among Jini, UPnP, and Bluetooth. Miller and Pascoe [21] show
how to map between the application-level programming interfaces
of Salutation and Bluetooth. Allard et al. [22] and Sameh and El-
Kharboutly [23] describe different techniques to bridge between
Jini and UPnP, while Guttman and Kempf [24] consider
techniques to bridge between Jini and SLP. Similarly, Yu et al.
[26] define a software structure for middleware that can bridge
among a diverse set of service discovery systems and distributed
object systems. Ponnekanti and Fox [25] take a more general tact
by defining a framework that clients may use to find candidate
services and to automatically configure an appropriate set of
proxies and stubs to allow a client to invoke a selected service.
Only one [23] of these papers investigates performance, and none
considers the effects of failures. While our paper does not
consider translation among discovery systems, researchers could
use our method to investigate and quantify robustness of various
designs for bridges and translators.

Beyond first-generation systems for discovery of services
operating in close proximity, researchers in industry and academe
are investigating how to build discovery systems that scale over a
wide area. An early proposal, known as Universal Description,

 2

Discovery and Integration (UDDI) [36], defines well-known,
web-accessible repositories, where service descriptions may be
deposited so that clients may query for services of interest. The
UDDI approach exhibits limited scalability because every service
in a network must deposit its description with a central directory,
or else with multiple replicas of a central directory. To overcome
such limitations, researchers continue to propose a number of
more flexible approaches. One early idea, E-speak [28], used an
expanding-ring multicast search to discover directories that
organized into a federated topology through which service
descriptions permeated over time. A similar idea is contained in
JXTA [29], where a peer-to-peer system is used to disseminate
copies of service descriptions throughout a topology of caches,
and in Neuron [32], a self-organizing and self-tuning topology of
caches that can tolerate failures of nodes and communication
links. Other self-organizing directories have also been proposed,
including SRIRAM [31], NeuroGrid [34], and the Secure Service
Discovery Service [27]. A somewhat different approach [30]
forms a logical ring (based on node addresses) that helps
individual nodes to bootstrap into various available overlay
networks, each of which advertises services. Grid researchers
have also proposed a design for wide-area service discovery [33],
coupled with the ability to inject and disseminate real-time status
information [35]. Most of these designs include provisions to
detect and recover from failures or to mitigate failures; however,
no comprehensive results exist that compare robustness among
various designs. While this paper investigates robustness only for
local discovery, we suspect that our method could be applied to
quantify and compare robustness among designs for wide-area
discovery.

3. MODELING SERVICE DISCOVERY SYSTEMS

Service discovery systems enable components in a network to
discover each other, and to determine if discovered components
meet specific requirements. Further, discovery systems include
consistency-maintenance mechanisms, which can be used by
applications to detect changes in component availability and
status, and to maintain, within some time bounds, a consistent
view of distributed components. Many diverse industry activities
explore different approaches to meet such requirements, leading
to a variety of proposed designs [1-6]. Some groups approach the
problem from a vertically integrated perspective, coupled with a
narrow application focus. Other groups propose more widely
applicable solutions. For example, a team of researchers and
engineers at Sun Microsystems designed Jini Networking
Technology [2], a discovery system atop Java, which provides a
base of portable software technology. As another example, a
group of engineers at Microsoft and Intel conceived Universal
Plug-and-Play (UPnP) [3] to extend plug-and-play from single
computers to distributed systems. Similarly, the efforts of Sun
Microsystems and other companies led to the Service Location
Protocol (SLP) [4], aimed at providing service discovery for the
Internet.

While these designs appear quite different, the systems
share some common traits. First, they all assume availability of
the Internet protocols as a base. Second, they all provide general
approaches to describe the capabilities and status of services.
Third, they all include mechanisms that can be used to detect and
recover from failures. Jini, UPnP, and SLP differ in architecture,
in approach to describing services, and in assumptions about how
to use transport protocols. This interesting combination of

similarities and differences led us to base our comparative study
on Jini, UPnP, and SLP. Our main challenge was finding a means
to clearly understand and represent similarities and differences
among the three systems. To address this challenge, we developed
a general model with common terminology and then mapped
concepts from each specific system into our model.

3.1 A General Model of Service Discovery Systems

Our model provides a basis for comparative analysis of various
discovery systems by representing major architectural components
and concepts with a consistent and neutral terminology (see first
column in Table 1). The main components in our model include:
(1) service user, (2) service manager, and (3) service cache
manager. A service user (SU) is a client in a service discovery
system. A SU is concerned with discovering services from
components within the distributed system, acquiring access to
discovered services, and using discovered services. A service
manager (SM) maintains a database of service descriptions, each
of which encodes the characteristics of a particular service
provider (i.e., the provider of the service). Each service
description (SD) contains the identity, type, and attributes that
characterize a service provider (SP). Each SD also includes the
addresses of software interfaces (e.g., an application-
programming interface or graphic user interface) to access a
service. A SU seeks SDs satisfying specific requirements. A
service cache manager (SCM) operates as an intermediary,
matching advertised SDs from SMs to requirements provided by
SUs. SCMs are optional components supported by some, but not
all, discovery systems. Table 1 shows how these general concepts
map to specific concepts from Jini, UPnP, and SLP.

 G
 Se

 S

 S
 S

The behaviors by which (Jini, UPnP, and SLP) SUs

discover and maintain consistency in relevant SDs depend in part
upon the system architecture and design and in part on the
transport protocols used. Transport protocols are used for two
kinds of message exchange: (1) multicast, in which transmitted
messages are conveyed to all receivers that participate in a
multicast group and (2) unicast, which is point-to-point
communication directly between a pair of corresponding entities.
Both Jini and UPnP use the UDP (User Datagram Protocol) for
exchanging multicast messages and use the TCP (Transmission
Control Protocol) for exchanging unicast messages. UPnP also
uses UDP to unicast answers to multicast queries. SLP uses UDP
for exchanging both multicast and unicast messages. The

Service RegistrationDevice/Service DescriptionService Itemervice Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceervice Provider

Service AgentRoot DeviceService or
Device Proxy

ervice Manager

User AgentControl PointClientrvice User

SLPUPnPJinieneric Model

Service RegistrationDevice/Service DescriptionService Itemervice Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceervice Provider

Service AgentRoot DeviceService or
Device Proxy

ervice Manager

User AgentControl PointClientrvice User

SLPUPnPJinieneric Model

S

S

S

Se

G

Table 1. Mapping Concepts among Selected Service Discovery
Systems.

 3

differences in transport protocols become significant when
considering approaches to detect and recover from failures;
therefore, we defer (until Section 4) a more detailed discussion.
Here, we focus on behavioral differences arising from variations
in architecture and design.

3.2 Modeling Service Discovery Architectures and Protocols

Our analysis of six distinct discovery systems revealed that most
designs use one of two architectures: two-party or three-party.
One discovery system we examined uses both architectures
together. A two-party architecture consists of two major
component types: SMs and SUs. Figure 1 illustrates a two-party
architecture (configured for UPnP). Service discovery occurs
through interactions between these two component types; SUs
discover SMs and then query them for suitable SDs. A three-party
architecture adds a third component type, the SCM, which
contains a directory. Figure 2 illustrates a three-party architecture
(configured for Jini). In a three-party architecture, both SMs and
SUs first discover SCMs to serve as intermediaries. SMs deposit
SDs with SCMs and SUs interact with SCMs to obtain suitable
SDs. A third architectural variant (supported by SLP) employs
both the two-party and three-party architecture and is capable of
switching between them, depending on circumstances. We call
this an adaptive architecture.

3.2.1 Discovery in Two-Party Architectures. Given a two-
party architecture, we model the behavior of participating SMs
and SUs. Upon startup, each SU and SM engages in a discovery
process to locate other relevant components within the network
neighborhood. We chose behaviors described in the specification
for UPnP [3].

In a lazy-discovery process, each SM periodically
announces existence of its SDs over a designated UPnP multicast
group. Upon receiving these announcements, SUs with matching
requirements use a HTTP (HyperText Transfer Protocol)/TCP
unicast link to request, directly from the SM, copies of the SDs
associated with relevant SPs. The request is made using an HTTP
GET request. The SU stores SD copies in a local cache.

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as
Msearch queries, on the UPnP multicast group. Any SM holding
a SD with matching requirements may use a HTTP/UDP unicast
link to respond (after a jitter delay) directly to the SU. Whenever a
SM responds to an Msearch query (or announces itself), it
repeats a sequence of messages, with separate messages for
distinct devices and service types managed by the SM. For each
appropriate response, the SU uses a HTTP/TCP unicast link to
send an HTTP GET request for a copy of relevant SDs, caching
them locally.

Figure. 1 Two-party service discovery system deployed
in a topology with three service users (SUs) and thee
service managers (SMs).

In UPnP, multiple HTTP GET requests are required to
transfer the SD, because each SD consists of two parts. To
maintain a SD in its local cache, a SU expects to receive periodic
announcements from the relevant SM. In UPnP, the SM
announces the existence of SDs at a specified interval, known as a
Time-to-Live, or TTL (1800 s minimum recommended). Each
announcement specifies a TTL value. If the SU does not receive
an announcement from the SM within the TTL (or a periodic SU
Msearch does not succeed within that time), the SU may
discard the discovered SD.

3.2.2 Discovery in Three-Party Architectures. Given a
three-party architecture, we model the behavior of participating
SCMs, SMs, and SUs, which each engage in a discovery process
upon startup. We chose behaviors described in the Jini
specification [2], where SMs and SUs attempt to discover any
intermediary SCMs that exist in the network neighborhood.

Upon initiation, a Jini component enters aggressive
discovery, where it transmits probes on a designated aggressive-
discovery multicast group at a fixed interval (5 s recommended)
for a specified period (seven times recommended), or until it has
discovered a sufficient number of SCMs. Upon cessation of
aggressive discovery, a component enters lazy discovery, where it
listens on a designated lazy-discovery multicast group for
announcements sent at intervals (120 s recommended) by SCMs.
Our three-party model implements both the aggressive and lazy
forms of Jini multicast discovery.

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Once discovery occurs, a SM deposits a copy of the SD for
each of its services on the discovered SCM. The SCM caches this
deposited state, but only for a specified length of time, or TTL. To
maintain a SD on the SCM beyond the TTL, a SM must refresh
the SD. In this way, if the SM fails, then the SCM can purge any
SDs deposited by the SM. SUs may query discovered SCMs for
SDs of interest. Alternatively, a SU may deposit a query with the
SCM, which will attempt to match SDs provided by SMs to
specifications of the deposited query. The SCM forwards any
matching SDs on to the SU that deposited the relevant query.

Figure 2. Three-party service discovery system deployed in
a topology with three service users (SUs), three service
manager (SMs), and three service cache manager (SCMs).

3.2.3 Discovery in Adaptive Architectures. An adaptive
architecture requires SMs and SUs to rendezvous through a SCM,

 4

but allows direct SM-SU interaction when no SCM is available. If
SMs and SUs interact directly and a SCM becomes available, then
the architecture requires SMs and SUs to resume interacting
through the SCM. We use the term mode switching to denote this
ability to change architectural configurations (i.e., to switch
between two- and three-party architectures). To model an adaptive
architecture, we chose behaviors from the SLP specification [4].

SLP systems are configured by default to operate in three-
party mode, switching to two-party mode when SCMs are
unavailable. Like Jini, three-party SLP discovery requires that
SMs and SUs first discover intermediary SCMs. Upon initiation, a
SLP SM or SU enters aggressive discovery, where every 900 s it
transmits six probes within a fixed interval of 15 s on a designated
aggressive-discovery multicast group. On the other hand, a SLP
SCM and SM component commences lazy discovery, where it
emits announcements on a designated lazy-discovery multicast
group at recommended intervals of 10800 s (once every three
hours), which we lowered to 120 s in all experiments to provide
more consistent behavior in the adaptive and three-party
architectures. When operating in three-party mode, SLP SUs and
SMs rendezvous through SCMs. After discovery, SLP SMs
employ procedures (similar to Jini) to deposit SDs for relevant
services on discovered SCMs for a specified TTL, and then to
refresh deposited SDs. To make behavior as consistent as possible
across our models, we decided to use the same TTLs (on a per
experiment basis) for a SD to be cached by a SCM. We denote a
specific choice of TTL when describing each experiment (see
Section 6). SUs query SCMs for SDs matching their requirements.
SCMs process queries, matching SDs against SU requirements,
and forward matches to SUs. SUs can cache the response and
contact the related SPs to obtain use of the service.

When SLP SUs and SMs fail to detect SCMs, they switch
to two-party mode. In two-party mode, a SLP SU both listens for
lazy announcements from SMs and transmits the aggressive-
discovery six-message probe sequence at 900 s intervals, while
SMs listen for probes and respond as appropriate. Upon receiving
a lazy announcement or an aggressive-probe response, a SLP SU
(in two-party mode) queries the SM for SDs matching its
requirements. The SM responds with matching SDs, which the SU
caches locally. In the meantime, SUs continue to search for a
SCM, using both lazy and aggressive discovery. Upon finding a
SCM, SLP requires the SU to switch to three-party mode and to
cease direct contact with SMs discovered in two-party mode. All
further contact with SMs must take place through SCMs.

3.3 Modeling Consistency Maintenance Mechanisms

Service discovery systems include consistency-maintenance
mechanisms to ensure that changes to critical information about
services can be propagated to interested SUs. Critical information
could include service availability and capacity, and updates to
descriptive information about service capabilities. Discovery
systems that we analyzed provide one or both of two consistency-
maintenance mechanisms: polling and notification. We discuss
each in turn.

3.3.1 Polling. In polling, a SU periodically sends queries to
obtain up-to-date information about a SD that was previously
discovered, retrieved, and cached locally. In a two-party
architecture, the SU issues the query directly to the SM from
which the SD was obtained; thus, we model the UPnP HTTP GET
request mechanism to poll the SM to retrieve a SD associated with
a specific URL (Uniform Resource Locator). In response, the SM

provides a SD containing a list of supported services, including
relevant attributes.

Polling in a three-party architecture consists of two
independent processes. In one process, a SM sends a request to
propagate an updated SD to each SCM on which the SD was
originally cached. In Jini, this request takes place through a
ChangeService message, which causes the SCM to update the
cached SD. In SLP, the SM re-registers the SD, which causes the
SCM to replace the previously deposited SD with the new version
and an updated TTL. In a second process, each SU polls relevant
SCMs by periodically issuing a query for a copy of SDs that the
SU has previously retrieved and cached. The SCM replies with
matching SDs. In Jini, the poll is implemented with a
FindService request and a MatchFound reply; SLP polls
(SCMs in three-party mode and SMs in two-party mode) with
SrvRqst and SrvReply messages, respectively. We adopted a
180 s polling interval for all architectures.

3.3.2 Notification. Notification requires that updates be
transmitted to interested parties immediately after they occur. We
model notification only for the two-party and three-party
architectures (i.e., not for the adaptive architecture), because the
SLP specification that we used does not include notification.

In two-party notification, a SM sends events to a SU that
indicates a SD has changed. To receive events about a SD of
interest, a SU must first register with the SM for this purpose. We
model this procedure using the UPnP subscription mechanism,
where the SU sends a Subscribe request, and the SM responds
by either accepting or denying the request. The subscription, if
accepted, is retained for a TTL, which may be refreshed with
subsequent Subscribe requests from the SU. In our
experiment, we chose 1800 s as TTL for subscriptions in both (the
two- and three-party) architectures.

Three-party notification requires a two-step procedure,
which we model as specified for Jini. First, SUs must register with
SCMs to receive notification about SDs of interest. The SCM
registers the notification request for a specified TTL, which may
be refreshed. Second, a SM issues a ChangeService to
propagate a SD update to all SCMs on which the SM has
previously deposited the SD. When the SCM receives a
ChangeService request from a SM for a SD it has cached, the
SCM issues a MatchFound that propagates the updated SD to
all SUs that have registered to receive such notifications.

4. MODELING FAILURE DETECTION AND

RECOVERY TECHNIQUES

Interactions among distributed components may be impeded by
failures; thus, such components must be prepared to detect failures
and take recovery actions. In this section, we review the types of
failure that can impede interactions and then we describe selected
failure detection and recovery techniques. We explain how we
incorporated the techniques into our models.

4.1 Failure Types

We classify failures into two general categories: process failures
and communication failures. Process failures can be caused by
cyber attacks, by programming errors, or by hardware failures.
We can subdivide process failures into node and thread failures.
During a catastrophic failure, processing in a node ceases, and the
node must reinitialize before processing resumes. Some
information maintained by the node may persist across the failure,

 5

while other information may be lost. The nature and condition of
persistent information could prove crucial to a node’s behavior
after processing resumes. Of course, the node might never
reappear. Thread failures, while less catastrophic, can be more
troublesome than node failures. A node might rely on certain
long-running threads to react to events from other nodes. Failure
of selected threads can interfere with the operation of the node, as
well as other nodes. In some cases, a node can appear to be
present, while being effectively inoperable. Since the effects of
node and thread failure are similar, we focus only on node failure
in this study, allowing the effects of thread failure to be inferred.

Communication failures can arise due to jamming, or other
interference, due to congestion, due to denial of service attacks,
due to physical severing of cables, due to improperly configured
or sabotaged routing tables, or due to multi-path fading as nodes
move across a terrain. We subdivide communication failures into
three classes: interface failures, message loss, and path failures. A
communication interface in a node may fail fully (both transmit
and receive) or partially (either transmit or receive). All outbound
messages from an interface will be lost when the transmitter fails,
while all inbound messages will be lost when the receiver fails.
Message loss, a less severe failure, implies that individual
messages may be dropped, either sporadically or in bursts. Path
loss appears as a blocked communication route between two
nodes, or areas, in a network. A path can be blocked in one or
both directions. Because effects of path failure are similar to
interface failure, we studied only interface failure.

4.2 Failure Detection and Recovery Techniques

In service discovery systems, failure detection and recovery
responsibilities are divided among three parties: (1) transport
protocols, (2) discovery protocols, and (3) applications. The
transport protocols support the discovery protocols and the
application, while the application also relies on the discovery
protocols. We first describe failure detection and recovery
provided by transport protocols, such as TCP and UDP. We then
discuss heartbeats and soft state ⎯ the main detection and
recovery techniques implemented by discovery protocols.
Subsequently, we discuss remote exceptions and retries, which are
the main detection and recovery techniques available to
applications and selected discovery processes. We describe how
we model these techniques.

4.2.1 Recovery by Transport Protocols. Discovery
protocols and applications use recovery services from three types
of transport: (1) unreliable multicast protocols, (2) unreliable
unicast protocols, and (3) reliable unicast protocols. We discuss
each in turn.

Unreliable Multicast Protocols. Unreliable protocols,
whether multicast or unicast, neither recover nor signal lost
messages; thus, neither source nor destination will learn of a loss.
Further, multicast protocols exchange messages along a tree of
receivers. For this reason, a multicast message might be received
by some nodes, but not by others. A failure near a multicast
source prevents messages from being received by any node in the
multicast tree, while a failure near a receiver prevents messages
from being received by only a single node in the tree. Of course,
failures at intermediate points in the tree could result in messages
being lost to subsets of receivers. All three systems we studied
(UPnP, Jini, and SLP) employ unreliable UDP multicast
protocols.

When simulating UDP transmission, our models discard
messages lost due to congestion and due to interface failures.
During interface failure, the models discard all messages sent
from a node with a failed transmitter, as well as all messages
inbound for a node with a failed receiver. Neither sender nor
receiver learns the fate of lost messages. Since unreliable
protocols provide no guarantees, recovery must be provided by
mechanisms at a higher layer.

Unreliable Unicast Protocols. Among the systems we
studied, both SLP and UPnP use an unreliable unicast protocol.
SLP uses unicast UDP to transmit SrvRqst messages, used for
queries, and to transmit SrvReg messages for registrations and
registration renewals. To improve reliability, SLP employs two
additional procedures. First, SLP issues redundant SrvRqst
messages; each request is sent four times within a 15 s interval.
Second, SLP requires a waiting period (we used 15 s) to listen for
a corresponding SrvRply. If no SrvRply is received within
that time, then the message transmission is abandoned and a
remote exception (REX) is declared so that a higher layer entity
can decide upon an appropriate recovery action. Our SLP models
incorporate this behavior.

UPnP uses unicast UDP to send responses to Msearch
queries. To improve the reliability of these responses, UPnP
requires that each UDP message be sent multiple (n) times. In our
model, we set n=2.

Reliable Unicast Protocols. Reliable unicast protocols
include mechanisms that attempt to ensure message delivery by
detecting and re-transmitting lost messages. Of course, the
reliability schemes may eventually give up if too many
retransmissions are needed (which might indicate node or
interface failure). In such cases, the reliable unicast protocol will
signal to a higher layer that a message was (probably) not
delivered. For example, Jini uses Remote Method Invocation
(RMI) over TCP to invoke a method on a remote object, and to
receive a response and UPnP uses TCP to submit HTTP requests
and receive HTTP responses. Either the RMI layer (in Jini) or the
TCP layer (in UPnP) can signal a remote exception (REX).

Our model unifies reliable unicast protocols into one set of
procedures that simulate TCP in two phases: connection
establishment and data transfer. The connection establishment
phase consists of exchanging connection request and response
messages. Both connection requests and responses may involve
multiple retries before a connection is established. We simulate
connection request retries with delays of 6 s, 24 s, and 24 s, before
signaling the connection requester with a REX 24 s after the final
retry (78 s after the initial request).

Successful connection establishment initiates a data-
transfer phase, where the connection requester sends a data
request and may await a data response. The data request and
response may be subject to retransmissions. We compute a
retransmission timeout (RTO) that is roughly the round-trip time,
or RTT. We increase the RTO by 25% with each successive
retransmission. Retries in the data-transfer phase continue until a
time threshold (60 s) is reached, after which the transmission
attempt is abandoned. Failure of a data request causes a REX to
be issued to the requester. Failure of a data response causes a
REX to be issued to both the requester and responder. The
requester cannot determine whether a REX was caused by failure
to transmit the request or by failure to receive a response. The
responder has more information, as it does not receive a REX
when an inbound request fails, but does receive a REX when its

 6

outbound response fails. In essence, while reliable unicast
protocols attempt to deliver messages in the face of various
communication failures, ultimately the reliability mechanisms
might prove insufficient, causing a higher-layer process to be
notified of the failure. In such cases, the higher-layer process is
free to determine an appropriate recovery strategy.

4.2.2 Recovery by Discovery Protocols. Components in a
discovery system may also learn of failure by listening for
recurring messages sent by remote components, much as a
heartbeat is monitored to assess patient health. For example,
UPnP SMs periodically multicast lazy announcements advertising
SDs. Similarly, Jini and SLP SMs periodically refresh SD
registrations on SCMs by sending unicast messages, and then
listening for responses. Both lazy announcements and registration
refresh messages convey soft state (or information) — in this case,
the SD, which a receiver can cache for a period consistent with
the associated TTL. When subsequent heartbeat messages fail to
arrive within the TTL, a listener may assume failure of the SM
and thus discard cached information about its related SD,
effectively eliminating knowledge about existence of the related
service.

Our models use a form of soft state that allows SDs for
failed components to be discarded and then to be either
rediscovered or replaced. For example in our two-party model,
once a UPnP SU discards knowledge of a SM and any associated
SDs, the SU commences periodic multicast (Msearch) queries to

No recoveryNo recoveryNo recoveryMulticast
UDP

SU and SM purge SCM after
period of continuous REX
(varied by experiment).

SM: depositing or refreshing SD
on SCM retry; SU: registering
and refreshing notification
requests on SCM retry (120 s)

SU: FindService Poll
SCM: Notification

SU and SM issue seven probes
(at 5 s intervals) only during
startup; SCM issues lazy
announcements at interval (120
s).

SM registers SDs for TTL
varied by experiment; SU
registers notifications for TTL
varied by experiment.

Issue REX in 78 s

Not Applicable

Three-Party
Architecture (Jini)

Three-party mode: SU and SM
purge SCM after
period of continuous REX
Two-party mode: SU purge SM
after period of continuous REX
(varied by experiment).

SU:SrvRqst after discovery
retry (180 s with < 3 retries);
SM (three-party mode)
depositing or refreshing SD on
SCM retry (120 s)

SU: SrvRqst Poll
(Notification unsupported)

SU and SM issue 6 probes
within 15 s duration during
startup and at 900 s interval;
SCM sends lazy
announcements at 120 s
interval (SLP recommends
10800 s).

SM (in two-party mode only)
sends lazy announcements at
120 s interval (recommended
10800 s by SLP); SM registers
SDs for TTL varied by
experiment.

Not Applicable

Redundant transmission n = 4
No recovery

Adaptive
Architecture (SLP)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU purges SD after failure to
receive SM announcement
within TTL or after 3 retries of
HTTP GetDiscard

Knowledge

SU: HTTP Get after discovery
retry (180 s with < 3 retries);
Registration request and
refresh retry (120 s)

Retry after
REX

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application

SU issues aggressive probe
(UPnP Msearch) at interval
after purging SD (set to 120 s).Soft-State

Recovery

SM sends n (3+2d+k) lazy
announcements of SDs at
interval varied by experiment.
SU caches SD for TTL varied
by experiment. (recommended
1800 s for announcement
interval and TTL by UPnP)

Heartbeat

Discovery
Protocols

Issue REX in 78 sTCP

Redundant transmission n = 2
No recovery

Unicast UDP
Transport
Protocols

No recoveryNo recoveryNo recoveryMulticast
UDP

SU and SM purge SCM after
period of continuous REX
(varied by experiment).

SM: depositing or refreshing SD
on SCM retry; SU: registering
and refreshing notification
requests on SCM retry (120 s)

SU: FindService Poll
SCM: Notification

SU and SM issue seven probes
(at 5 s intervals) only during
startup; SCM issues lazy
announcements at interval (120
s).

SM registers SDs for TTL
varied by experiment; SU
registers notifications for TTL
varied by experiment.

Issue REX in 78 s

Not Applicable

Three-Party
Architecture (Jini)

Three-party mode: SU and SM
purge SCM after
period of continuous REX
Two-party mode: SU purge SM
after period of continuous REX
(varied by experiment).

SU:SrvRqst after discovery
retry (180 s with < 3 retries);
SM (three-party mode)
depositing or refreshing SD on
SCM retry (120 s)

SU: SrvRqst Poll
(Notification unsupported)

SU and SM issue 6 probes
within 15 s duration during
startup and at 900 s interval;
SCM sends lazy
announcements at 120 s
interval (SLP recommends
10800 s).

SM (in two-party mode only)
sends lazy announcements at
120 s interval (recommended
10800 s by SLP); SM registers
SDs for TTL varied by
experiment.

Not Applicable

Redundant transmission n = 4
No recovery

Adaptive
Architecture (SLP)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU purges SD after failure to
receive SM announcement
within TTL or after 3 retries of
HTTP GetDiscard

Knowledge

SU: HTTP Get after discovery
retry (180 s with < 3 retries);
Registration request and
refresh retry (120 s)

Retry after
REX

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application

SU issues aggressive probe
(UPnP Msearch) at interval
after purging SD (set to 120 s).Soft-State

Recovery

SM sends n (3+2d+k) lazy
announcements of SDs at
interval varied by experiment.
SU caches SD for TTL varied
by experiment. (recommended
1800 s for announcement
interval and TTL by UPnP)

Heartbeat

Discovery
Protocols

Issue REX in 78 sTCP

Redundant transmission n = 2
No recovery

Unicast UDP
Transport
Protocols

Table 2. Summary of Recovery Mechanisms and Key Parameters.

search for a new instance of the service. Once the SU regains a
SD meeting its requirements, the related queries cease. SLP
employs an analogous procedure when operating in two-party
mode.

The process is more complicated in three-party situations.
Here, failure of refresh messages causes SCMs to discard a
service registration. A SU may monitor the status of the SD by
periodically polling the SCM. When poll responses indicate the
SD is no longer present on the SCM, the SU may then discard its
cached copy of the SD. In Jini, SUs may also register with the
SCM to be notified when the SCM discards the SD. When
receiving such notification, a SU discards its cached copy of the
SD and then attempts to find a replacement by querying the SCM
for another SD that satisfies its requirements. Meanwhile, a SM
for a SD discarded by the SCM might recover after failures are
repaired. The SM may rediscover the SCM through aggressive or
lazy discovery, and then reregister the lost SD. The SU, if it has
not found a replacement, can then receive the original SD by
querying the SCM (Jini and SLP) or through notification (Jini).

Table 2 summarizes the way in which we model heartbeat
and soft state for each of our models. The table indicates values
we adopted across all experiments (except as otherwise indicated
in the table and discussed in Section 6). Though SCM discoveries
could also be retained by SMs and SUs on a soft-state basis, the
discovery systems we studied use an application-level technique
to detect SCM failures.

 7

4.2.3 Recovery by Applications. When failure detection
leads to a REX, discovery systems generally expect application
software to initiate recovery, guided by an application-level retry
policy. In our models, depending on the situation, we implement
three different policies: (1) ignore the REX, (2) retry the operation
for some period, and (3) discard knowledge. The discard strategy,
employed following repeated failure of the retry strategy, relies
upon discovery mechanisms to recover from failures that are more
persistent. These strategies (discussed below) are summarized in
Table 2.

Ignoring the Remote Exception. In general, our models
ignore any REX received when responding to a request, relying
on the requester to retry. A SU can ignore a REX received when
issuing a poll (e.g., FindService, SrvRqst, or HTTP GET)
because the poll recurs at an interval. A Jini SCM (three-party
model) or UPnP SM (two-party model) also ignores a REX
received while attempting to issue a notification. This behavior,
which is described in both the Jini and UPnP specifications,
depends upon TCP to provide reliability for notifications.
Notifications include sequence numbers that allow a receiving
node to determine whether or not previous notifications were
missed.

Retrying the Operation. In our models, we retry selected
operations in the face of a REX. The UPnP specification separates
the operation of discovering a service from obtaining a description
of the service (Jini combines these operations). Without a
description, a service cannot be used. For this reason, in the UPnP
model, a SU must issue a HTTP GET to obtain a description. If no
description arrives within 180 s, then our model retries the HTTP
GET. If unsuccessful after three attempts, the SU purges the
related SD and discards knowledge of the SM. Our three-party
models, based on Jini and SLP, also contain a retry strategy, but
associated with attempts to register or change a SD with a SCM.
In these cases, the SM retries a ChangeService or
ServiceRegistration 120 s after receiving a REX.
Similarly, when a SU receives a REX (from either a SM or SCM)
in response to a request to register for notification, the SU retries
the registration in 120 s. These retries recur up to some time
bound, after which the SM discards knowledge of the SCM.

Discarding Knowledge. Both the two-party and three-party
models include the possibility that an application can discard
knowledge of previously discovered nodes. After discarding
knowledge of a SM or SCM, all operations involving that node
cease until it is rediscovered, either through lazy or aggressive
discovery.

In our UPnP model, SUs discard a SM (and any related
SDs) after failure to receive announcements from a SM within a
TTL or after three unsuccessful retries of a HTTP GET. In our
SLP model (two-party mode), SUs do not discard SMs after
failure to receive announcements. We took this decision because
the SLP specification does not require SUs to discard a SM when
missing a heartbeat.

In our three-party model (based on Jini), a SM or SU
deletes a SCM after a period (varied by experiment) of receiving
only REXs when attempting to communicate with a SCM. We
adopt this behavior because the Jini specification states that a
discovering entity may discard a SCM with which it cannot
communicate. While the SLP specification is silent on these
issues, we implemented our SLP model (in both two-party and
three-party modes) so that SUs discard SMs after a period (varied
by experiment) of continuous REXs. We took this decision to
align this behavior among all our models.

5. EXPERIMENT METHODOLOGY

We adopted a common approach to modeling, to experiment
design, and to metrics for analysis. Aspects of the approach seem
suited to investigation of failure response in other classes of
distributed systems. Below, we discuss our approach.

Model Construction. We created simulation models for the
three architectures we found. Executable models enabled us to
understand collective behavior among distributed components.
We based the structure and behavior of our models (recall Section
3) on specifications for UPnP [3] (two-party architecture), Jini [2]
(three-party architecture), and SLP [4] (adaptive architecture).
Each model comprises a set of components (and relationships
among them), interactions (as messages received by components),
behavior (as actions taken in response to messages, including
generating new messages), and variables (to represent internal
state of components). Components communicate via a simulated
transport service that represents multicast UDP and unicast UDP
and TCP (as explained in Section 4.2.1). The transport service can
be impeded by simulated message loss and interface failures. We
used Rapide [43], an architecture description language and
accompanying toolset developed at Stanford University, to
implement models of Jini and UPnP; for SLP we used SLX, a
simulation system developed by Wolverine Software [44]. We
chose to use two different simulation systems in order to establish
the generality of our approach. We note that the Rapide system
automatically records causal event traces and provides tools to
visual and analyze those traces.

Experiment Design. With simulation models in hand, we
designed experiments to investigate failure response for selected
configurations of components, where each configuration
represents a distinct combination of architecture (two-party, three-
party, or adaptive), number of deployed SCMs, and choice of
behaviors for discovery, consistency maintenance, and recovery.
We approached experiment design by focusing on the types of
failures (recall Section 4.1) that might interfere with system
operation. We decided to consider four failure types: (1) power
failure and restart, (2) node failures, (3) interface failures, and (4)
message loss. For each failure type, we constructed an
application-level scenario to exercise simulated topologies. Our
scenarios include: (1) recovering a previously discovered
configuration (on restart after power failure), (2) maintaining
operational capability in a distributed real-time control application
(impeded by failure of nodes hosting needed components), and (3)
maintaining consistency of distributed information (when
communication is impeded by interface failures or message
losses). For these scenarios, we simulated various configurations
of our models with parameters selected to ensure that observed
performance differences resulted only from differences in system
architecture and protocol. For three scenarios (node failures,
interface failures, and message loss), we subjected each
configuration to increasing failure rates, while measuring system
response. To focus on fundamental differences in the designs for
discovery systems, we excluded a number of possible application-
level choices, such as local caching of service descriptions and
varying subscription lengths.

Metrics. To compare failure response among simulated
configurations, we defined metrics specific to each scenario.
Broadly these metrics fall into three categories: (1) effectiveness,
which is the ability of a distributed system to exhibit a desired
state, expressed as a probability that the state is reached or a

 8

proportion of time a system is in the desired state; (2)
responsiveness, which is the time taken, or latency, to reach the
desired state; and (3) efficiency, which is the amount of effort,
measured by the number of messages, required for a distributed
system to complete a scenario. For most combinations of
configuration and scenario, we conducted repeated simulations
and then we plotted (on the y-axis) performance on a metric
against increasing failure rate (on the x-axis). The graphs also
include a table that summarizes performance by averaging a
metric across all failure rates; this summarization of the plotted
curves gives a quick comparison of relative performance. An
exception to this general approach to measurement occurs for the
scenario related to restart after power failure, where there is no
increasing failure rate. In this case, we simply provide the average
and variance of the latency before a configuration is restored. In
selected cases, we analyzed event traces to understand how
differences in architecture, topology, and behavior contribute to
differences in performance.

6. EXPERIMENTS AND RESULTS

In this section, we describe our scenarios and exhibit results. For
each scenario, we describe the related experiment, delineate the
failure model and recovery parameters, define the metrics, display
the results and discuss underlying causes. We begin in Section 6.1
with the power-failure-and-restart scenario and then consider in
Section 6.2 the distributed real-time control scenario impeded by
node failures. Subsequently (in Section 6.3), we discuss the
consistency maintenance scenario impeded by communication
failures of two types: interface failures and message losses.

6.1 Recovery After Power Failure

In this experiment, a distributed system establishes an initial
configuration in which pairs of SUs and SMs rendezvous, so that
each SU obtains one required service. Subsequently, a power
failure causes all nodes to crash. Upon power restoration, each SU
attempts to rediscover the previously acquired service. This
experiment measures the latency until the initial configuration is
restored.

6.1.1 Experiment Description. This experiment compares
several system designs: a two-party model (based on UPnP), a
three-party model (based on Jini), and an adaptive model (based
on SLP). In the two-party case, the topology (recall Figure 1)
consists of six nodes: three SUs and three SMs. We partition the
nodes into three SU-SM pairs that attempt to rendezvous. In the
three-party cases (Jini and SLP), the topology (recall Figure 2)
adds three SCMs for a total of nine nodes; however, we use
logical partitioning (Jini groups and SLP scopes) so the each SU-
SM pair must discover each other through a different SCM; so
that a previously discovered configuration may not be
rediscovered until all nodes have restarted. We allow all SU-SM
pairs to rendezvous, which establishes an initial configuration, and
then we simulate a power failure lasting 40 s. We restore power
and wait for SUs to rendezvous with the previously discovered
SMs. Once the initial configuration is restored the scenario ends.

Each model includes parameters set to the values indicated
in Table 3. The first three rows in Table 3 show parameters
unique to specific discovery systems. These parameters include
the pattern for aggressive-discovery probes and the interval for
lazy-discovery announcements. Jini and UPnP allow SUs to
register for notifications; we assume such registrations are lost on

node failure. SLP does not allow notifications and thus requires
SUs to poll SCMs to discover services. We instantiated the
adaptive architecture with two different polling intervals: 31 s as
recommended for SLP and 5 s in order to gain early acquisition of
services. The fourth row of Table 3 shows parameters for which
we selected common values across all models. In particular, note
that each node has a restart delay, which in most cases is not
defined in discovery specifications. Since the specification for Jini
recommends a random delay distributed uniformly between 2 s
and 15 s before commencing discovery operations, we decided to
assign this same strategy to all of our models in order to eliminate
this as a source of difference. The final row of Table 3 lists
common transmission and processing delays that we used for each
model.

 Table 3. Parameters For Power Failure and Restart Experiment.

120 sAnnounce Interval

120 sAnnounce Interval

Purge on SM FailureNotification Requests

30 sRegistration TTL
Common Protocol
Parameters

100 sTotal Registration Duration

2 s – 15 s uniformNode Restart Delay

SLP Protocol
Parameters

4 Probes in 15 sProbe Pattern

Not ApplicableNotification Requests

5 s or 31 sPolling Interval

Jini Protocol
Parameters

7 Probes 5 s apartProbe Pattern

Purge on SCM FailureNotification Requests

Not ApplicablePolling Interval

None used in experimentProbe Pattern

1800 sAnnounce IntervalUPnP Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10 us – 100 us uniformProcessing Load Delay

1 us – 10 us uniformTransmission Delay
Delays Used in
For All Models

Not ApplicablePolling Interval

ValueParameterParameter Class

120 sAnnounce Interval

120 sAnnounce Interval

Purge on SM FailureNotification Requests

30 sRegistration TTL
Common Protocol
Parameters

100 sTotal Registration Duration

2 s – 15 s uniformNode Restart Delay

SLP Protocol
Parameters

4 Probes in 15 sProbe Pattern

Not ApplicableNotification Requests

5 s or 31 sPolling Interval

Jini Protocol
Parameters

7 Probes 5 s apartProbe Pattern

Purge on SCM FailureNotification Requests

Not ApplicablePolling Interval

None used in experimentProbe Pattern

1800 sAnnounce IntervalUPnP Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10 us – 100 us uniformProcessing Load Delay

1 us – 10 us uniformTransmission Delay
Delays Used in
For All Models

Not ApplicablePolling Interval

ValueParameterParameter Class

6.1.2 Metrics. We defined two metrics to compare system
performance: restoration latency and efficiency. Restoration
latency measures the elapsed time from restoration of power until
the initial configuration is reestablished. Since restoration latency
depends upon the starting time of the last system component, we
defined restart delay to measure the elapsed time from restoration
of power until the final system component restarts. We defined
efficiency as the total number of messages during restoration
latency.

Table 4. Results For Power Failure and Restart Experiment.

 1005765.1334.681.2213.23

Adaptive
(31 s polling interval)

77554.2516.21.5713.13
Adaptive
(5 s polling interval)

90703.3114.762.0912.56Three-Party
67492.9715.042.9713.07Two-Part

MaximumMinimumVarianceMeanVarianceMean

Efficiency
(number of messages)

Restoration Latency
(seconds)

Restart Delay
(seconds)Model Variant

y

1005765.1334.681.2213.23
Adaptive
(31 s polling interval)

77554.2516.21.5713.13
Adaptive
(5 s polling interval)

90703.3114.762.0912.56Three-Party
67492.9715.042.9713.07Two-Part

MaximumMinimumVarianceMeanVarianceMean

Efficiency
(number of messages)

Restoration Latency
(seconds)

Restart Delay
(seconds)Model Variant

y

 9

6.1.3 Results. Table 4 presents results, measured over 30
repetitions, for four different configurations. The metrics reveal
that for most configurations, restart delay is the dominant
component of restoration latency; the previous configuration is
restored within about 2 s after all nodes have restarted. An
exception arises when we configure the adaptive architecture with
a 31 s polling interval. Here, the polling interval is the dominant
component of restoration latency. This occurs in cases where a
related SCM and SU both restart before the SM. Here the SU
discovers and queries the SCM for services before the SM can
find the SCM and register its service. In this situation, the SU
must wait for the 31 s polling interval to elapse for issuing a
second, successful query. Reducing the polling interval to 5 s
brings restoration latency closer to that exhibited by the other
architectures.

Regarding efficiency, Table 4 shows that architectures with
more components exchange more messages during a restoration
scenario, but those architectures with the same number of
components tend to exchange more messages when the scenario
takes longer to complete. The three-party architecture proves
slightly less efficient than the adaptive architecture because Jini
incurs messages related to registration, which SLP does not
support.

One final point to note is the slightly better restoration
latency of the three-party, as compared with two-party,
architecture. This occurs because Jini delivers a service
description in one step, concomitant with discovery, while UPnP
requires a three-step process: discover the service, get the first
part of the service description, and then get the second part of the
service description. Should transmission delays increase, this
factor would cause even greater difference in restoration latency.

6.2 Service Acquisition and Maintenance Impeded by Node
Failures

 In this experiment, we investigate effectiveness and efficiency of
service discovery systems in detecting component failure and
locating replacements. We model a client for a distributed real-
time control application that must discover two types of sensor
and an actuator, then monitor sensor readings and control a
process. The client has access to a population of sensors and
actuators, each running on separate nodes that we allow to fail.
The client, sensors, and actuators are supported by a discovery
system, represented by configurations of the three architectural
variants in our models: two-party (UPnP), three-party (Jini), and

adaptive (SLP). Where applicable, the experiment topology may
include one or more SCMs, which we also allow to fail. We
compare configurations using functional effectiveness, measured
as the proportion of time that the client possesses an operational
set of sensors and actuators required to control the process. We
also compare efficiency among configurations by the number of
messages exchanged.

Slow
Sensor

SM

Slow
Sensor

SM

Service
User

Service Cache
Manager
(SCM)

Aggressive Discovery Multicast Group

Lazy Discovery Multicast Group

Actuator
SM

Actuator
SM

Fast
Sensor

SM

Fast
Sensor

SM

Unicast Links

Remote Method
Invocation

Optional SCMs

Figure 4. Three-party service discovery system with one
service user, 12 service managers, and up to three service
cache managers.

6.2.1 Experiment Description. Our experiment models a
topology that includes one (client) SU and 12 SMs, composed of
four instances each of three service types: “fast” sensor, “slow”
sensor, and actuator. Figure 3 illustrates such a topology
configured as a two-party architecture and Figure 4 shows the
same topology configured as a three-party architecture (including
one to three SCMs). We compare the performance of eight
different configurations, enumerated in Table 5. Here, one
configuration (A0) uses a two-party (UPnP) architecture and one
(C0) uses an adaptive (SLP) architecture limited to two-party
mode, three configurations (B1, B2, and B3) use a three-party
(Jini) architecture, and three configurations (C1, C2, and C3) use
an adaptive, three-party (SLP) architecture.

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast

Sensor
SM

Fast
ensor
SM

S

Figure 3. Two-party service discovery system with one service
user and 12 service managers.

Slow
ensor
SM

S
Slow
ensor
SM

S

Actuator
SM

Actuator
SM

Service
User

Table 5. Eight Configurations Compared in Node-Failure
Experiment.

Three

Two

One

None

Three

Two

One

None

SCMs

C3
C2
C1

B3
B2

C0

B1

A0

Configuration

SLP

Jini

UPnP

Behavior

Three-Party

Adaptive

Two-Party

Architecture

Three

Two

One

None

Three

Two

One

None

SCMs

C3
C2
C1

B3
B2

C0

B1

A0

Configuration

SLP

Jini

UPnP

Behavior

Three-Party

Adaptive

Two-Party

Architecture

 10

To establish initial conditions, we exercise each
configuration until discovery completes and the SU acquires one
service of each of the three service types. We then fail nodes
according to the failure model described below. In order to focus
exclusively on failure detection and recovery processes, we do not
allow the SU to cache backup services, so at any time the SU
holds at most one SD for each service type. After activation, a
“fast” sensor transmits a reading every two seconds and a “slow”
sensor transmits a reading every 30 seconds. The SU invokes the
actuator after receiving an appropriate combination of readings
from a “fast” and “slow” sensor. We select actuation times
randomly from a uniform distribution with a mean of 60 s,
provided the SU receives the required sensor readings. When the
SU holds one SD for a service of each type (“fast” sensor, “slow”
sensor, and actuator) and when each of those services is
operational, then the application is considered functional. If the
SU lacks SDs for one or more service type or if one or more of the
SDs held by the SU describes a service instance that is not
operational, then the application is considered non-functional.
When non-functional, the SU client must first detect what services
have failed and then initiate recovery procedures to discover
replacements. During each experiment repetition, we accumulate
the periods when the client is non-functional as well as the time
required for failure detection and recovery. We also record
message counts of the underlying service discovery system for the
experiment duration.

6.2.2 Failure Model. During the experiment duration ,
each SM node (and SCM node in three-party configurations) fails
randomly and independently, although at least one service of each
type always remains active so that the application could become
functional. We let

DT

λ be the node failure rate that varies from 0%
to 80% in 10% increments (though no failures occur when

0=λ). The mean time to node failure is . DMF Tt ⋅−=)1(λ

Node failure times are randomly chosen from a “stepped” normal
distribution with three steps: a 0.15 probability of failure before

, a 0.7 probability of failure between

and , and a 0.15 probability of failure between

 and . Failure times are distributed uniformly
within each step. When a node fails, affected services become
unavailable for a time, selected from three failure duration classes,
each with a different probability and duration. Short failures occur
with a probability of 0.1 for a fixed (135 s) duration; intermediate
failures occur with a probability of 0.7 for a duration selected

uniformly on the interval

MFMF tt 2.0− MFMF tt 2.0−

MFMF tt 2.0+

MFMF tt 2.0+ MFt2

[]300,180 s, long failures occur with a

probability of 0.2 selected uniformly on the interval []600,480 s.
6.2.3 Failure Recovery Techniques. Table 6 gives common

and configuration-specific parameters for failure recovery
techniques we used in this experiment. We chose parameters that
enable the SU to respond quickly to failure of remote services and
to find replacements as soon as possible. We describe the
recovery techniques employed in our model: first at the discovery
level and then at the application level.

Discovery-Level Recovery. For the two-party (UPnP)
architecture, we use a heartbeat and soft-state strategy, choosing a
TTL of 600 s for refreshing cached SDs. If not refreshed within
the TTL, the SU purges the SD and commences periodic (120 s)
Msearch queries to find a replacement service. When we model
SLP in two-party mode, the SU both listens for lazy
announcements (120 s) from SMs and periodically issues
multicast queries for SMs (900 s) to find replacements. In three-
party configurations (both Jini and SLP), we model heartbeat
monitoring through registration refreshes, choosing a refresh
interval of 30 s for slow sensors and actuators and 300 s for fast
sensors. If refreshes are missed, the SCM purges the SD. In the

 Table 6. Recovery Parameters for Node-Failure Experiment.

120 sMulticast query intervalBehavior for two-party
SLP configuration B0

Immediately after missed sensor
reading and after failing to receive an

actuation response within 20 s
SU purges SD

180 sSU-SCM query interval

At TTL expiration (600 s)SU purges SD

Discovery-Level
Recovery

120 sMsearch query interval

Application-Level
Recovery

20 s after failure to receive response to
requestSM or SU purges SCM

2 s for fast sensors
30 s for slow sensors

Sensor interval

All configurations

Immediately after learning SD is
unavailableSU purges SD

Immediately after a missed refreshSCM purges SD

30 s for slow sensors and actuators
300 s for fast sensorsRefresh interval

Behavior for three-party
Jini and SLP

configurations
B1, B2, B3, C1, C2, C3

600 s (lowered from recommended
value)Announce interval

Behavior for two-party
UPnP configuration A0

ValueParameterConfiguration

120 sMulticast query intervalBehavior for two-party
SLP configuration B0

Immediately after missed sensor
reading and after failing to receive an

actuation response within 20 s
SU purges SD

180 sSU-SCM query interval

At TTL expiration (600 s)SU purges SD

Discovery-Level
Recovery

120 sMsearch query interval

Application-Level
Recovery

20 s after failure to receive response to
requestSM or SU purges SCM

2 s for fast sensors
30 s for slow sensors

Sensor interval

All configurations

Immediately after learning SD is
unavailableSU purges SD

Immediately after a missed refreshSCM purges SD

30 s for slow sensors and actuators
300 s for fast sensorsRefresh interval

Behavior for three-party
Jini and SLP

configurations
B1, B2, B3, C1, C2, C3

600 s (lowered from recommended
value)Announce interval

Behavior for two-party
UPnP configuration A0

ValueParameterConfiguration

 11

three-party architecture, a SU that discovers a SD through a SCM
polls that SCM every 180 s to learn if the SD has been purged; if
so, the SU assumes failure of the related service and also purges
the SD. In both three-party and adaptive architectures, SUs and
SMs search for SCMs by listening for lazy announcements (120
s).

Application-Level Recovery. Across all models, we adopt
an identical application-level recovery policy: upon failure to
receive a scheduled sensor reading (every 2 s for fast sensors and
30 s for slow sensors) the SU immediately purges the related SD
and commences search for a replacement. Similarly, failure to
receive a response to an actuation attempt within 20 s causes the
SU to purge the related SD and to commence search. A similar
policy applies to detecting failed SCMs. If a SM does not receive
a response when attempting to refresh a service registration, the
SM assumes that the SCM has failed and begins searching for a
replacement. Similarly, if a SU does not receive a response to a
SCM query, the SU purges the SCM and begins to search.

6.2.4 Metrics. We define as accumulated time during
which a client application is in a non-functional state. We

compute the proportion of that a client application is in a
functional state, or the client’s functional effectiveness, by the

ratio . We compute the average functional
effectiveness of a configuration at a particular failure rate

NFT

DT

() DNFD TTTF /−=

λ for n
experiment repetitions as

()
n

TTT
F

n

i i
D

i
NF

i
D∑ −

= =1

/
λ

We measure as follows. As indicated, a client that has become
non-functional first incurs a delay before detecting the failure. We
call this delay detection latency. After detecting a non-functional
state, the client may incur some delay while restoring required
services. We call this delay recovery latency. Detection latency
commences when a SM fails but the SU holds a SD provided by
the SM. Once the SU discards the SD, or the SM recovers,
detection latency ends. Recovery latency begins after the SU
purges a SD for a failed service and commences search. Recovery
latency ends when the SU finds a SD matching its needs. During
periods when a client incurs either detection or recovery latency
or both (the states can overlap), the client is non-functional, and

we accumulate such periods in .

NFT

NFT
6.2.5 Results. For each of the eight configurations in Table

5, we set and executed 60 repetitions for each

failure rate

s1800=DT

λ . Figure 5 shows average functional effectiveness

λF for each configuration as λ increases. Figure 5 also includes

a table that shows the summary statistic 800 −F , which is λF
averaged across all values of λ for each configuration. The
results show that six of the eight configurations have similar

curves for λF and a 800 −F of over 0.9. The three-party
configuration with one SCM (B1) and two SCMs (B2) perform
less well, because as λ rises, the incidence of failure of the single
SCM in B1 and concurrent failure of both SCMs in B2 increases.
With no SCM to query for services, the SU remains non-
functional. Adding a third SCM (B3) reduces the probability of

concurrent SCM failure sufficiently to raise 800 −F to a level

comparable with other configurations. The adaptive architecture

achieves a comparable 800 −F even with two or fewer SCMs,
because when no SCMs can be found, the SU immediately
switches to two-party mode to discover the available SMs. In the
discussion below, we provide more detail on the effectiveness of
these configurations by considering their comparative detection
and recovery latencies.

0.4

0.6

0.8

1

0 20 40 60 80
A

ve
ra

ge
 F

un
ct

io
na

l E
ffe

ct
iv

en
es

s

C0 C3
B3 C2
C1 A0

As revealed in Figure 6, efficiency varies markedly among

As revealed in Figure 6, efficiency varies markedly among
the configurations. The two-party configurations A0 and C0 are
notably more efficient than any three-party configuration. This
occurs in part because more messages are needed for SUs and
SMs to rendezvous through SCMs. These messages include
heartbeats by the SCMs, registration and refresh of SDs by SMs,
and polls of SCMs by the SU. In the three-party and adaptive
architectures, differences in protocol also influenced efficiency.
For equivalent configurations, the three-party architecture (B1,
B2, and B3) proves more efficient than the adaptive architecture
(C1, C2, and C3). This occurs, because in the former, Jini SCMs
send lazy announcements at 120 s intervals, while Jini SUs and
SMs employ aggressive search only at start-up. However, in the
adaptive architecture, both SLP SCMs and SMs announce every
120 s, while SUs and SMs repeat a six-probe aggressive search
sequence at regular intervals (900 s). We believe that with
equivalent underlying behaviors, adaptive and three-party
architectures would exhibit similar efficiency when configured
with an equal number of SCMs.

One additional point is worth noting. In the two-party
configurations (A0 and C0), the message-count curves have
increasing slope as λ increases, because the SU must search
more frequently for replacement services. Note, however, that
three-party configurations have message-count curves with
decreasing slope as λ increases. The rate of message exchange
decreases because SCMs fail more frequently and remain down
for longer periods as λ rises, thus reducing the number of
opportunities for SD refresh messages and SCM heartbeats.

Failure Rate λ (%)

B2

B1

0.915C2

C3

C1

C0

B3

B2

B1

Configuration

A0

0.916

0.872

0.804

0.913

0.921

0.918

0.911

0.915C2

C3

C1

C0

B3

B2

B1

Configuration

A0

0.916

0.872

0.804

0.913

0.921

0.918

0.911

800−F

Figure 5. Comparing average functional effectiveness λF for
different configurations in response to increasing rate of node
failures, where at least one SM of each type is operational (60
repetitions per data point). The table gives the 800−F , or
functional effectiveness averaged across all values of λ for
each configuration.

 12

6.2.6 Discussion. While three-party configurations with
three SCMs (B3 and C3) yield comparable functional
effectiveness to two-party configurations (A0 and C0), our
experiment reveals quite different underlying causes. Figures 7(a)-

(c) display similar non-functional time () under increasing
failure rate for configurations A0, B3, and C3. The figures also

decompose into the proportions attributable to detection
latency and recovery latency. In the two-party configuration,

reported in Figure 7(a), about 90 % of accrues while waiting
to detect a failure; recovery occurs quickly. Analysis of execution
traces showed most failures were detected through missed sensor
readings or REXs received in response to failed actuations. In the
three-party configuration, shown in Figure 7(b), the situation is

different. Here, the largest component of is recovery latency.
Execution traces for the three-party architecture show incidence of
concurrent failure of all SCMs rising steadily with increasing

NFT

NFT

NFT

NFT

λ .
With no SCMs available, the SU is unable to find replacements
for failed services until a SCM (1) recovers, (2) is discovered by
the SU and SMs, (3) accepts registrations from available SMs, and
(4) responds to queries from the SU. These factors dramatically

increased the proportion of attributable to recovery latency.
This trend is more marked with fewer SCMs (not shown here). In
the adaptive configuration, as displayed in Figure 7(c), over 90 %

of NF is again detection latency. Here, upon detecting failure, the
SU switches to two-party mode when no SCMs can be found;
thus, avoiding the delay incurred in waiting for a SCM to recover.
Hence, the detection and recovery behavior of the adaptive
configuration appears quite similar to the two-party configuration,
which is also reflected in the similarity of Figures 7(a) and 7(c).

NFT

T

6.3 Consistency Maintenance Impeded by Communication

Failures

In this experiment, we investigate effectiveness and efficiency of
service discovery systems in maintaining consistency of
information replicated throughout a distributed system. We model

five clients (SUs) that each discover the same service manager
(SM) and obtain a copy of the service description (SD) managed
by the SM. Subsequently, the SM updates its local copy of the
SD, creating an inconsistency with the SDs replicated to the SUs.
We measure the probability that each SD will receive an updated
copy of the SD prior to a deadline, the latency incurred in
receiving the updated SD, and the number of messages exchanged
to convey the update. We consider effects from two types of
communication failure, interface failures and message losses,
which could impede dissemination of the updated SD. We also
compare two alternate consistency maintenance mechanisms:
polling (recall Section 3.3.1) and notification (recall Section
3.3.2), which are supported by selected discovery systems.

0

10
00

20
00

30
00

40
00

0 20 40 60 80

Failure Rate λ (%)

M
es

sa
ge

 C
ou

nt
s

C3
B3

C2
B2

C1
B1

A0
C0

Figure 6. Comparing message counts for different
configurations in response to increasing rate of node
failures where at least one SM of each type is
operational (60 repetitions per data point).

 (a) Decomposition of Nonfunctional Time into Detection and
Recovery Latency for Configuration A0.

(b) Decomposition of Nonfunctional Time into Detection and
Recovery Latency for Configuration B3.

(c) Decomposition of Nonfunctional Time into Detection and
Recovery Latency for Configuration B3.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

DETECTION LATENCY

RECOVERY LATENCY

NONFUNCTIONAL
TIME

Pr
op

or
tio

n
of

 L
at

en
ci

es

NONFUNCTIONAL
TIME

DETECTION LATENCY

RECOVERY LATENCY

CONFIGURATION C3

NONFUNCTIONAL
TIME

DETECTION LATENCY

RECOVERY LATENCY

CONFIGURATION B3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es
Pr

op
or

tio
n

of
 L

at
en

ci
es

DETECTION LATENCY

RECOVERY LATENCY

NONFUNCTIONAL
TIME

CONFIGURATION A0

Figure 7. Detection and recovery latencies of various
configurations as a proportion of nonfunctional time (60
repetitions per data point).

 13

6.3.1 Experiment Description. We compare performance of
nine configurations, as enumerated in Table 7. One configuration
(A0p) uses a two-party (UPnP) architecture (see Figure 8) with a
polling regime to maintain consistency. Another configuration
(A0n) combines the same architecture with notification. Four
configurations (B1p, B1n, B2p and B2n) use a three-party (Jini)
architecture (see Figure 9) with one or two SCMs and polling or
notification. Three configurations (C0p, C1p and C2p) use an
adaptive (SLP) architecture (with zero, one, or two SCMs) and
polling (SLP does not include a notification mechanism).

To establish initial conditions, we set aside an interval, up

to time , for all SUs to discover the SM and obtain the SM’s
SD. We then activate interface failures or message loss according
to the appropriate failure model described below. In addition, we

establish a deadline D by which the change must propagate to all
SUs, and then chose a time, randomly distributed on the uniform

interval

Qt

t

[2, DQ tt] , to introduce a change in the SD on the SM.

Here, we set s and s. Each experiment aims
to restore consistency between the changed SD held by the SM
and the cached copies of the SD held by the SUs. We recorded the
time of change to the SD on the SM, the latency required to

propagate the update to each SU prior to (or failure to do so)
and the number of messages exchanged.

100=Qt 5400=Dt

Dt

6.3.2 Failure Models. We conducted separate experiments
for interface failure and message loss. Table 8 summarizes
relevant parameters for each failure model.

Interface Failure. In the interface-failure experiment, we let
λ be the interface failure rate. During the experiment, each node
suffers an interface failure at a time, randomly distributed on the

uniform interval ()[]λ⋅− QQQ ttt , . When activating each
interface failure, there is an equal likelihood that the transmitter,
receiver, or both fail. Once activated, each failure remains in

effect for the duration of , after that the failure is remedied.
During a failure interval, no messages are sent from a node with a
failed transmitter, and a node with a failed receiver does not
receive messages. For each configuration simulated, we varied

λ⋅Dt

λ
from 0 to 90 % in increments of 5 %. Table 7. Nine Configurations Compared in Communication-

Failure Experiments.

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

Polling SLPAdaptive
(no SCMs)C0p

C2p

C1p

B2n

B2p

B1n

B1p

A0n

A0p
Configuration

Polling
(with service registration on SCM)SLPAdaptive

(One SCM)

Polling
(with service registration on SCM)SLPAdaptive

(Two SCMs)

Notification
(with service registration and notification registration on SCM)JiniThree-Party

(Two SCMs)

Polling
(with service registration on SCM)JiniThree-Party

(Two SCMs)

Notification
(with service registration and notification registration on SCM)Jini

Three-Party
(One SCM)

Polling
(with service registration on SCM)JiniThree-Party

(One SCM)

Notification
(with notification registration on SM)UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismBehaviorArchitecture

Polling SLPAdaptive
(no SCMs)C0p

C2p

C1p

B2n

B2p

B1n

B1p

A0n

A0p
Configuration

Polling
(with service registration on SCM)SLPAdaptive

(One SCM)

Polling
(with service registration on SCM)SLPAdaptive

(Two SCMs)

Notification
(with service registration and notification registration on SCM)JiniThree-Party

(Two SCMs)

Polling
(with service registration on SCM)JiniThree-Party

(Two SCMs)

Notification
(with service registration and notification registration on SCM)Jini

Three-Party
(One SCM)

Polling
(with service registration on SCM)JiniThree-Party

(One SCM)

Notification
(with notification registration on SM)UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismBehaviorArchitecture

Figure 9. Three-party service discovery system deployed
in a seven- or eight-node topology: five service users, a
service manager, and one or two service cache managers.

Message Loss. In the message-loss experiment, we let λ
be the message-loss rate. For each attempt to transmit a message,
whether on a reliable or unreliable channel, a uniform random real

number is selected from the unit interval[. If the number is

less than

]1,0

λ , the message is discarded. Loss of a message sent on
a reliable channel stimulates a retransmission after an appropriate
timeout. We varied λ as in the interface-failure experiment.

Table 8. Parameters for Interface Failure and Message Loss
Models.

Each transmission may fail
with probability equal to
message loss rate
from 0 to 90%.

Failure incidence

Message
Loss Individual message

transmissionFailure scope

Individual message
transmission Failure duration

5% increments of 5400 s
from 0 to 90%Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface
Failure

ValueParameterFailure

Each transmission may fail
with probability equal to
message loss rate
from 0 to 90%.

Failure incidence

Message
Loss Individual message

transmissionFailure scope

Individual message
transmission Failure duration

5% increments of 5400 s
from 0 to 90%Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface
Failure

ValueParameterFailure

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Figure 8. Two-party service discovery system deployed in a
six-node topology: five service users and one service

 14

6.3.3 Failure Recovery Techniques. We model recovery
techniques at three levels: transport protocols, discovery
protocols, and application. Recovery techniques for the transport
protocols are described in Section 4.2.1. Table 9 shows the
recovery techniques and related parameters we adopted for the
discovery and application levels.

Discovery-Level Recovery. In the two-party (UPnP)
architecture, we use a heartbeat and soft-state strategy where SUs
discarded SDs not refreshed within a TTL (of 1800 s). To enable
rediscovery of SMs (and SCMs, where applicable) we adopt a
discovery behavior consistent with the specific protocol (UPnP,
Jini, or SLP) being modeled. In all configurations (except A0p,
which does not employ registration), we chose the same TTL (of
1800 s) after which registrations would be discarded if not
renewed. For REXs received in response to registration or refresh
attempts, to ad-hoc queries, or to change-service operations, the
retries occur at intervals of 120 s (but only up to a maximum of
540 s). To comply with the Jini and UPnP specifications, there are
no retries after a REX when attempting to issue notifications.

Application-Level Recovery. For configurations (A0p,

B1p, B2p, C0p, C1p, and C2p) that use polling, we set the
polling interval to 180 s. In (UPnP) configurations (A0p and
A0n), SUs discard a SD after (HTTP GET) queries to the SM
result in nothing but REXs for a total of 540 s. In other
configurations, SUs discard a SCM after receiving nothing but
REXs over 540 s while attempting to interact with the SCM.

6.3.4 Metrics. We evaluate update effectiveness,
responsiveness, and efficiency. Update effectiveness measures the
probability that a change to a SD will propagate to a given SU

before the deadline . We let n be the number of repetitions of

an experiment, m be the number of SUs in a topology, and be
the time that an updated SD is propagated to SU j,

Dt

jit′
mj ≤≤1 , in

experiment repetition i, . Then, we define update
effectiveness for the failure rate

ni ≤≤1
λ over n repetitions as

mn

chg
U

n

i

m

j
ij

⋅

∑ ∑

=
= =1 1

λ

where

⎩⎨
⎧ <′

=
otherwise

if

0

,1 Dij

ij

tt
chg

defines whether a change in a SD was propagated to the jth SU
during the ith repetition (i.e., 1 if true, 0 if false).

Update responsiveness measures the latency in propagating

the SD update. We let be the time the SD change occurred on

the SM in experiment repetition i. Update responsiveness

it′

λR~ is

the median of all at a particular value of ijp−1 λ where

iD

i

ij

tt

tijt
p

′−

′−′
=

is the proportion of time required to propagate an update to the jth

SU in the ith repetition at it′ λ . Table 9. Key Model Parameters for Communication-
Failure Experiments. Update efficiency measures the effort required to (attempt

to) maintain consistency. Analysis of our experiment
configurations revealed a minimum number of messages, x , that
must be sent to propagate a change to all SUs. This minimum
(7=x) occurred for the three-party configuration with
notification and one SCM (B1n)2. We define update efficiency
based on the ratio of x to the actual number of messages
observed. We let y be the number of messages sent while
attempting to propagate a change from the SM to the SUs in a
given repetition. Then, for n number of experiment repetitions, we
define average update efficiency at a particular failure rate λ as

1800 sAnnounce interval

1800 sRegistration TTLA0n, B1p, B1n, B2p, B2n, C1p
and C2p

After 540 s with
only REXSM or SU purges SCMB1p, B1n, B2p, B2n, C1p and

C2p

After 540 s with
only REXSU purges SDA0p, A0n, and C0p

180 sPolling interval A0p, B1p, B2p, C0p, C1p and
C2p

Application-
Level

Recovery

120 sTime to retry after REXA0n, B1p, B1n, B2p, B2n, C0p,
C1p and C2p

900 sAnnounce interval

Variable
(4 probes in 15 s)Probe interval

C0p, C1p, and C2p (SLP)

120 sAnnounce interval

5 s (7 times)Probe interval
B1p, B1n, B2p and B2n (Jini)

At TTL expirationSU purges SD

120 sMsearch query intervalA0p and A0n (UPnP)

Discovery-
Level

Recovery

ValueParameterConfiguration

1800 sAnnounce interval

1800 sRegistration TTLA0n, B1p, B1n, B2p, B2n, C1p
and C2p

After 540 s with
only REXSM or SU purges SCMB1p, B1n, B2p, B2n, C1p and

C2p

After 540 s with
only REXSU purges SDA0p, A0n, and C0p

180 sPolling interval A0p, B1p, B2p, C0p, C1p and
C2p

Application-
Level

Recovery

120 sTime to retry after REXA0n, B1p, B1n, B2p, B2n, C0p,
C1p and C2p

900 sAnnounce interval

Variable
(4 probes in 15 s)Probe interval

C0p, C1p, and C2p (SLP)

120 sAnnounce interval

5 s (7 times)Probe interval
B1p, B1n, B2p and B2n (Jini)

At TTL expirationSU purges SD

120 sMsearch query intervalA0p and A0n (UPnP)

Discovery-
Level

Recovery

ValueParameterConfiguration

()
n

yx
E

n

i
i∑

= =1

/
λ .

6.3.5 Interface-Failure Results. For each configuration in
Table 7, we executed 1000=n repetitions at each interface-

failure rate λ . Figure 10 shows update effectiveness for the
configurations as

λU
λ increases. The figure also includes a table

with mean update effectiveness 900 −U , which is averaged
across all values of

λU
λ for each indicated configuration. Overall,

these results show that a two-party architecture, or an adaptive
architecture that has a two-party mode, provides superior
effectiveness to a three-party architecture (at least given
topologies limited to one or two SCMs). This occurs because each
updated SD must propagate over only one channel (SM to SU) in
two-party cases, but over two channels (SM to SCM and SCM to
SU) in three-party cases. For both three-party and adaptive

architectures, 900 −U improves with the number of SCMs due to
the reduction in the incidence of joint failure of both channels. We
note that polling yields better effectiveness than notification. For
example, when comparing three-party polling with one SCM
(B1p) against three-party notification with one SCM (B1n), the
advantage of polling appears as λ exceeds 35 % because when

2 Recall that the two-party (UPnP) architecture requires a multiple-
message exchange to convey SDs.

 15

notifications fail, SD updates are propagated by recovery
mechanisms, which activate only after some delay. On the other
hand, polling persists with retries after receiving a REX. We note
that configurations using notification also exhibit anomalous
behavior when λ is in the range [%; we discuss the
reasons for this below in Section 6.3.7.

]25,5

Figure 11 shows median update responsiveness λR~ for all
configurations as λ increases. Generally, the ranking of
architectures for responsiveness is similar to effectiveness. Where
employed, notification exhibits better responsiveness than polling,
which incurs increased latency from the 180 s polling interval.

Figure 11 also shows a steep drop-off in λR~ for all configurations

as λ increases beyond the % range, where failures
prevent initial propagation of the updated SD, forcing invocation
of recovery actions that cannot succeed until paths are restored.
Thus, even though some configurations achieved effectiveness of
over 0.9 as

[30,20]

λ reaches 70% (see Figure 10), responsiveness for all
configurations approaches zero. Three-party configurations
experience longer delays at high values of λ as paths to SCMs
become increasingly unavailable.

Figurre 12 shows average efficiency λE for experiment
configurations as λ increases. The table included in Figure 12

shows 900 −E , which is λE across all values of λ for each

indicated configuration. Here, λE declines for all configurations
as λ increases. This reflects a rising number of messages
generated when recovery strategies are invoked more frequently
as λ rises. Configurations using more SCMs are less efficient (but
more effective) than similar configurations with fewer SCMs. The
adaptive architecture appears less efficient than the three-party
architecture with an equivalent number of SCMs for the reasons
described above in section 6.2.5. Again, we expect the use of

equivalent underlying behaviors would yield comparable
efficiencies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 8
Failure Rate λ (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

A0p

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 8
Failure Rate λ (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

A0p

B2n

B1n
B1p

A0n

B2p

C0p

C1p

C2p

0

0.502C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.459
0.425
0.548

0.522

0.479

0.527

0.517

0.522

0.502C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.459
0.425
0.548

0.522

0.479

0.527

0.517

0.522
900

~
−R

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 10

Failure Rate λ (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

A0n
A0p

C0p

A0n
C1p

C2p
B2n

B2p

0

B1n
B1p

0.887C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.817
0.811
0.924

0.934

0.858

0.901

0.864

0.948

0.887C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.817
0.811
0.924

0.934

0.858

0.901

0.864

0.948
900−U

Figure 11. Comparing median update responsiveness (λR~)
for different configurations in response to increasing rate of
interface failures (1000 repetitions per data point). The table
gives 900

~
−

Some other points seem worth noting. The three-party
configurations using notification (B1n and B2n) are more
efficient than similar configurations using polling (B1p and B2p)
because in Jini each SU poll to a SCM involves a request followed
by a reply, while a Jini SCM notification is a single message.
However, for 40<λ %, two-party (UPnP) notification (A0n)
appears less efficient than two-party polling (A0p). This occurs
because when UPnP notifications are lost, recovery strategies
must often be used, thus prolonging the time to propagate the
updated SD and increasing message counts.

R , which is λR~ , averaged across all values of λ for
each configuration.

Figure 10. Comparing update effectiveness (λU) for different
configurations in response to increasing rate of interface failures

(1000 repetitions per data point). The table gives 900 −U , or λU
averaged across all values of λ for each configuration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
Failure Rate λ (%)

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

B1n

A0p

C0p

B1p

80

nB1
C1p

A0n

B2p
C2p

0.146C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.309
0.196
0.179

0.179

0.108

0.091

0.183

0.228

0.146C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.309
0.196
0.179

0.179

0.108

0.091

0.183

0.228
900−E

Figure 12. Comparing average update efficiency (λE) for
different configurations in response to increasing rate of
interface failures (1000 repetitions per data point). The table

gives 900 −E , which is λE averaged across all values of λ for
each configuration.

 16

6.3.6 Message-Loss Results. For each configuration in
Table 7, we executed repetitions at each message-loss
rate

200=n
λ . Figure 13 shows update effectiveness λU for the

configurations as λ increases. Figure 13 also includes a table that

shows 900 −U across all values of λ for each indicated
configuration. Overall, these results show that most configurations
provide an effectiveness of 0.95 or better until λ exceeds 80 %.
Overall, effectiveness under message loss conditions is higher
than under interface failure conditions. This is because interfaces
fail for protracted periods at higher values of λ , increasing the
probability that channels remain blocked until , so updates
never get through. In contrast, message loss affects only
individual transmissions, allowing recovery strategies more
opportunities to propagate the update before Dt . Polling continues
to yield better effectiveness than notification. The two-party
configuration with polling (A0p) achieves a mean effectiveness of
0.99, due to the combined advantages of using polling with just
two parties (which requires transiting one channel rather than
two). We note that the two-party configuration with notification
(A0n) and the three-party notification with one SCM (B1n)
exhibit anomalous behavior and reduced effectiveness as

Dt

λ
surpasses 20 %; we discuss the reasons for this below in Section
6.3.7. Responsiveness (not shown here) exhibits a steep decline
after 80>λ %, compared with 30>λ % for interface failure.
The higher responsiveness under message loss conditions occurs
for the same reasons as higher effectiveness. Under message loss,
notification also continues to provide better responsiveness than
polling.

Figure 14 shows average efficiency λE for experiment

configurations as λ increases and includes a table for 900−E for
for each configuration. As in the case of effectiveness and
responsiveness, all configurations prove more efficient under
message loss conditions than under interface failure for the
reasons given above. The better efficiency is also reflected in the

overall more gradual decline in the message loss efficiency
curves. Otherwise, the general ordering of efficiencies for the
various configurations appears similar under both interface failure
and message loss. We note the reduced efficiency of the two-party
(UPnP) notification (A0n) above 20=λ % in comparison with
two-party polling (A0p). In A0n, efficiency suffers from cases
where notifications are lost and recovery procedures are required
to propagate the update (taking more time and requiring more
messages). The combination of lost notifications and use of
recovery also causes a sharp decline in the efficiency of the three-
party notification with a single SCM (B1n), which at low values
of λ , generates the fewest (7) messages to propagate updates.
Another exception is the three-party configuration using
notification with two SCMs (B2n), which exhibits increasing

efficiency over the failure rate range [% and overtakes the
three-party configuration using polling with one SCM (B1p). This
counterintuitive result occurs because in some repetitions, lost
messages cause the SM or SUs to discover only one of the two
SCMs; thus, messages that would normally be duplicated to both
SCMs are not.

]35,5

6.3.7 Discussion. The notification mechanism included in

UPnP and Jini (and other distributed systems) proved
unexpectedly ineffective at disseminating updates under certain
conditions. Foremost, under low interface-failure rates (in the
range []30,5 %) our results exhibit saw-tooth phenomena for
configurations using notification. The dip is most pronounced
(nearly 15%) for the two-party (UPnP) configuration (A0n) and
less pronounced (around 5%) for the three-party (Jini)
configurations (B1n and B2n). In the two-party case, analysis of
execution traces showed a large number of notifications were lost
when either the SM transmitter was inoperable (causing
notifications to all SUs to be lost) or when SU receivers were
inoperable (causing lost notifications to individual SUs). Since
neither UPnP nor Jini require notification senders to retry after a
REX, updated information must be disseminated through a

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 10

Failure Rate λ (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

A0n

B1n

A0p

B2n

B2p

A0n

C2p C1p
B2n C0p

0.951C1p

C2p

C0p

B2n

B2p

B1n

B1p

A0n

A0p

Configuration

0.886

0.950

0.929

0.944

0.975

0.966

0.948

0.991

0

0.951C1p

C2p

C0p

B2n

B2p

B1n

B1p

A0n

A0p

Configuration

0.886

0.950

0.929

0.944

0.975

0.966

0.948

0.991
900−U

Figure 13. Comparing update effectiveness (λU) for
different configurations in response to increasing rate
of message loss (200 repetitions per data point). The

table gives 900 −U , or λU averaged across all values of
λ for each configuration.

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

0.315C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.602
0.400
0. 317

0.378

0.244

0.235

0.419

0. 553

0.315C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.602
0.400
0. 317

0.378

0.244

0.235

0.419

0. 553
900−E

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

B1n

A0p

B2n

B1p

A0n

C2p

B2p

C0p

C1p

Failure Rate λ (%)
Figure 14. Comparing average update efficiency (λE) for
different configurations in esponse to increasing rate of
message loss (200 repetitions per data point). The table

gives 900−E , which is λE averaged across all values of λ for
each configuration.

 17

recovery mechanism. At low failure rates, a notification can be
lost to an interface failure, which is repaired prior to the next
announcement or registration-refresh attempt. Under such
conditions, recovery mechanisms are not invoked and the SU does
not obtain an updated SD. Polling proves more effective because
the SU checks periodically (180 s intervals) and persistently for
updated information and retrieves the SD when indicated.

A similar sequence of events occurs in the three-party case,
but the effects are more modest. The three-party configurations
require a SM to first propagate a change to a SCM. Failure to
propagate a change results in a REX that causes the SM to retry
the change for up to 540 s, during which time the interface failure
may be repaired. If still unconfirmed after 540 s, the SM purges
the SCM and initiates aggressive discovery. After rediscovering
the SCM, the SM propagates the change, and the SCM then
notifies registered SUs. Even with this redundancy, there still is
some chance that a SU receiver is blocked and thus unable to
receive notification. The redundancy does, however, increase the
probability that an updated SD reaches a SU.

Notification (as specified for UPnP and Jini) also appears
less effective under message loss. Lack of application-level retries
to deliver notices leads to significant decline in update
effectiveness above 20=λ %. This appears for the relevant two-
party (UPnP) configuration (A0n) and three-party (Jini)
configuration (B1n), both of which use notification. Above

20=λ %, the incidence of undelivered notifications increases
and, unless recovery is stimulated, the updated SD is not
disseminated. In configuration A0n, as λ exceeds 60 %, lost
registration-refresh requests trigger recovery procedures with
increasing frequency, which causes propagation of the updated
SD when a registration is reestablished. This process slightly
improves and then maintains effectiveness within the failure rate

range %, causing this curve to echo the saw-tooth
feature in the update effectiveness curve for A0n under interface
failure. Above

[80,60]
80=λ %, lost messages effectively close the

channel, and effectiveness collapses for all configurations.
For the three-party configuration (B1n), loss of change

requests (from the SM) as well as registration refreshes (from the
SM and SUs) also stimulate recovery procedures that partly
compensate for lost notifications. When a second SCM is added
(configuration B2n) update effectiveness improves because the
SM now has two paths through which to disseminate updates to
SUs.

7. CONCLUSIONS

Overall, we found designs for first-generation discovery systems
can be robust under difficult failure environments. Across all
experiments, most configurations exhibited an effectiveness of
better than 0.9 in obtaining services or propagating updates for
failure rates approaching (often exceeding) 80 %. Configurations
proved ineffective only when all essential nodes failed or were
unreachable, or when recovery actions were not activated (as
occurred in response to lost update notifications). Similarly,
extensive delays in propagating updates depended on the duration
of path outages.

For our scenarios and metrics, two-party configurations (or
three-party configurations that could adapt to two-party mode)
appeared more robust than three-party configurations (where
robustness improved with the number of replicated directories).
Deploying three directory replicas yielded robustness equal to

two-party configurations. In tradeoff, increasing the number of
directory replicas lowers system efficiency by increasing the
number of messages exchanged. In most cases, we found the
adaptive architecture with one directory achieved robustness
comparable to other configurations, while providing better
efficiency than configurations with replicated directories.

To disseminate updates, we found polling more effective
than notification. Our polling regime used persistent retries, while
our notification regime depended only on reliable transport
protocols, falling back to alternate recovery mechanisms when
notifications could not be delivered. The alternate recovery
mechanisms were not always activated at lower failure rates. This
anomaly appeared in effectiveness plots for configurations using
notification. Notification generally conveyed updates with less
delay than polling. In the two-party architecture, polling was more
effective, so scenarios tended to end earlier and require fewer
messages.

Beyond our methodology and comparisons, we identified
and discussed the most significant design and configuration
decisions that influence robustness and efficiency in first-
generation discovery systems. We showed how available
architectural alternatives, as well as choices for consistency
maintenance and recovery strategies, lead to robustness-efficiency
tradeoffs. We also showed how faulty assumptions regarding
recovery strategies could unexpectedly degrade robustness and
efficiency. The information provided should convey a better
understanding of failure behavior in existing discovery systems,
allowing potential users to configure deployments for high
robustness at low cost. The discussions presented here could also
help to improve designs for future discovery systems.

8. ACKNOWLEDGMENTS

We received generous funding support from Susan Zevin, as
acting director of the NIST Information Technology Laboratory,
Douglas Maughan, as manager of the Defense Advanced
Research Projects Agency (DARPA) Fault-Tolerant Networks
Program, John Salasin, as manager of the DARPA program in
Dynamic Assembly for System Adaptability, Dependability and
Assurance, and James Puffenbarger of the Advanced Research
and Development Activity (ARDA).

9. REFERENCES

[1] Salutation Architecture Specification, Version 2.0c, Salutation

Consortium, June 1999.
[2] K. Arnold, et al, The Jini Specification, Version 1.0, Addison-

Wesley, 1999.
[3] Universal Plug and Play Device Architecture (UPnP), Version

1.0, Microsoft, Inc., 2000.
[4] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service

Location Protocol, Volume 2, Internet Engineering Task
Force (IETF), RFC 2608, 1999.

[5] Specification of the Home Audio/Video Interoperability
(HAVi) Architecture, Version 1.1, HAVi, Inc., 2001.

[6] Specification of the Bluetooth System, Core, Version 1.1,
Volume 1, the Bluetooth SIG, Inc., 2001.

[7] C. Dabrowski, K. Mills, and S. Quirolgico, A Model-based
Analysis of First-Generation Service Discovery Systems,
Special Publication 500-260, National Institute of Standards
and Technology, 2005.

 18

[8] C. Dabrowski and K. Mills, “Analyzing Properties and
Behavior of Service Discovery Protocols Using an
Architecture-Based Approach,” Proceedings of Working
Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 2001.

[9] C. Dabrowski, K. Mills, and J. Elder, “Understanding
Consistency Maintenance in Service Discovery Architectures
During Communications Failure,” Proceedings of the 3rd
International Workshop on Software Performance, Rome,
Italy, July 2002, pp. 168-178.

[10] C. Dabrowski, K. Mills, and J. Elder, “Understanding
Consistency Maintenance in Service Discovery
Architectures In Response to Message Loss,” Proceedings
of the 4th International Workshop on Active Middleware
Services, Edinburgh, United Kingdom, July 2002, pp. 51-
60.

[11] C. Dabrowski, K. Mills, and A. Rukhin, “Performance of
Service-Discovery Architectures in Response to Node
Failure,” Proceedings of the International Conference on
Software Engineering Research and Practice, Las Vegas,
NV, June 2003, pp. 95-104.

[12] C. Bettstetter and C. Renner, “A Comparison of Service
Discovery Protocols and Implementation of the Service
Location Protocol,” Proceedings of the Sixth EUNICE Open
European Summer School: Innovative Internet Applications,
Open EUNICE 2000, Twente, Netherlands, September
2000.

[13] G. Richard, “Service Advertisement and Discovery: Enabling
Universal Device Cooperation,” IEEE Internet Computing,
Volume 4, Number 5, pp. 18-26, 2000.

[14] J. Rekesh, UPnP, Jini and Salutation - A look at some
popular coordination framework for future network devices,
Technical Report, California Software Lab, 1999.

[15] R. Pascoe, “Salutation Architectures and the newly defined
service discovery protocols from Microsoft and Sun: How
does the Salutation Architecture stack up,” Salutation
Consortium white paper, 1999.

[16] R. Pascoe, “Building Networks on the Fly,” IEEE Spectrum,
Volume 38, Issue 3, pp. 61-65, 2001.

[17] G. Richard, Service and Device Discovery: Protocols and
Programming, McGraw-Hill, 2002.

[18] G. O'Driscoll, Essential Guide to Home Networking
Technologies, Prentice-Hall Trading Company, 2000.

[19] B. Olivier, “Jini: a platform for building adaptive integrated
learning environments,” Report from the Centre for
Learning Technology (CeLT), University of Wales Bangor,
United Kingdom, December 2000.

[20] D. Bushmitch, W. Lin, A. Bieszczad, A. Kaplan, V.
Papageorgiou, and A. Pakstas, “A SIP-Based Device
Communication Service for OSGi Framework,”
Proceedings of the 2004 IEEE Consumer Communications
And Networking Conference, Las Vegas, NV, January
2004, pp. 453-458.

[21] B. Miller and R. Pascoe, “Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer,” Version 1.0,
Bluetooth SIG white paper, July 1999.

[22] J. Allard, V. Chinta, S. Gundala, and G. Richard, “Jini Meets
UPnP: An Architecture for Jini/UPnP Interoperability,”
Proceedings of the 2003 International Symposium on
Applications and the Internet (SAINT 2003), Orlando, FL,
January 2003, pp. 268-275.

[23] A. Sameh and R. El-Kharboutly, “Modeling Jini-UPnP
Bridge using Rapide ADL,” Proceedings of the IEEE/ACS
International Conference on Pervasive Services (ICPS'04),
Beirut, Lebanon, July 2004, p. 237.

[24] E. Guttman and J. Kempf, “Automatic Discovery of Thin
Servers: SLP, Jini and the SLP-Jini Bridge,” Proceedings of
the 25th Annual Conference of the IEEE Industrial
Electronics Society (IECON 99), Volume 2, San Jose, CA,
December 1999, pp. 722-727.

[25] S. Ponnekanti and A. Fox, “Application-Service
Interoperation without Standardized Service Interfaces,”
Proceedings of the IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003),
Fort Worth, TX, March 2003, pp. 30-39.

[26] M. Yu, A. Taleb-Bendiab, D. Reilly, and W. Omar, “Multi-
Standard Service Interoperation Protocol through
Polyarchical Middleware,” Proceedings of the PostGraduate
Networking Conference (PGNet), Liverpool, United
Kingdom, June 2003, pp.143-148.

[27] S. Czerwinski, et al, “An Architecture for a Secure Service
Discovery Service,” Proceedings of the Fifth Annual
International Conference on Mobile Computing and
Networks (MobiCom '99), Seattle, WA, August 1999, pp.
24-35.

[28] S. Frolund, et al., “Building Dependable Internet Services
with E-speak,” Hewlett Packard Laboratories Technical
Report HPL-2000-78, 2000.

[29] JXTA v2.0 Protocols Specification, Sun Microsystems, 2004,
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html.

[30] M. Castro, et al., “One Ring to Rule them All: Service
Discovery and Binding in Structured Peer-to-Peer Overlay
Networks,” The Proceedings of the Tenth ACM SIGOPS
European Workshop, ACM, Saint-Émilion, France,
September 2002.

[31] D. Verma, et al., “SRIRAM: A scalable resilient autonomic
mesh,” IBM SYSTEMS JOURNAL, Volume 42, Number 1,
pp. 19-28, 2003.

[32] H. Hsiao and C. King, “Neuron – A Wide-Area Service
Discovery Infrastructure,” Proceedings of the International
Conference on Parallel Processing (ICPP ‘02), Vancouver,
British Columbia, August 2002, p. 455.

[33] A. Iamnitchi and I. Foster, “On Fully Decentralized Resource
Discovery in Grid Environments,” Proceedings of an IEEE
International workshop on Grid computing, Denver, CO,
November 2001.

[34] S. Joseph, “NeuroGrid: Semantically Routing Queries in
Peer-to-Peer Networks,” Proceedings of the International
Workshop on Peer-to-Peer Computing, Pisa, Italy, May
2002.

[35] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
“Grid Information Services for Distributed Resource
Sharing,” Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-10), San Francisco, CA, August 2001, pp. 181-194.

[36] UDDI Technical White Paper, published by the members of
uddi.org, September 2000.

[37] V. Sundramoorthy, M. Speelziek, G. van de Glind, and J.
Scholten, “Service Discovery with FRODO,” 12th IEEE
International Conference on Network Protocols (ICNP),
Berlin, Germany, October 2004, pp. 24-27.

[38] K. Bowers, K. Mills, and S. Rose, “Self-adaptive Leasing for
Jini,” Proceedings of the IEEE International Conference on

 19

http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html

Pervasive Computing and Communications (PerCom 2003),
Fort Worth, TX, March 2003, pp. 539-542.

[39] K. Mills and C. Dabrowski, “Adaptive Jitter Control for
UPnP M-Search,” Proceedings of 2003 IEEE International
Communications Conference, Anchorage, AK, May 2003.

[40] S. Rose, K. Bowers, S. Quirolgico, and K. Mills, “Improving
Failure Responsiveness in Jini Leasing,” Proceedings of the
Third DARPA Information Survivability Conference and
Exposition (DISCEX-III 2003), Volume 2, Washington,
DC, April 2003, pp. 103-105.

[41] K. Mills, S. Rose, S. Quirolgico, M. Britton, and C. Tan, “An
Autonomic Failure-Detection Algorithm,” Proceedings of
the 4th International Workshop on Software Performance
(WoSP 2004), San Francisco, CA, January 2004, p. 79.

[42] C. Tan and K. Mills, “Performance Characterization of
Distributed Algorithms for Replica Selection in Distributed
Object Systems,” Accepted for Fifth International
Workshop on Software Performance (WoSP 2005), Palma
de Mallorca, Spain, July 2005.

[43] D. Luckham, “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, 1996.

[44] J. Henriksen, “An Introduction to SLXTM,” Proceedings of
the 1997 Winter Simulation Conference, ACM, Atlanta,
GA, December 1997, pp. 559-566.

 20

http://anna.stanford.edu/rapide

